1236 reflections	Atomic scattering factors
149 parameters	from International Tab
All H-atom parameters	for Crystallography (19
refined isotropically	Vol. C, Tables 4.2.6.8 a
$w = 1/[\sigma^2(F_o^2) + (0.0524P)^2]$	6.1.1.4)
where $P = (F_{0}^{2} + 2F_{c}^{2})/3$	

ational Tables lography (1992, les 4.2.6.8 and

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1026). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	z	U_{eq}
C1	-0.5088 (2)	0.1460 (2)	0.67035 (11)	0.0211 (3)
C2	-0.2908 (2)	0.1438 (2)	0.66390 (12)	0.0208 (3)
C3	-0.2116 (2)	0.3294 (2)	0.66479 (11)	0.0207 (3)
C4	0.0057 (2)	0.3258 (2)	0.66823 (11)	0.0213 (3)
01	-0.6036 (2)	0.0667 (2)	0.60748 (8)	0.0312 (3)
O2	-0.57617 (15)	0.2294 (2)	0.74456 (8)	0.0282 (3)
O3	-0.2276 (2)	0.0498 (2)	0.57938 (9)	0.0295 (3)
04	-0.2781 (2)	0.42691 (15)	0.58258 (9)	0.0292 (3)
O5	0.07300 (15)	0.2416 (2)	0.74383 (8)	0.0286 (3)
O6	0.1013 (2)	0.4000 (2)	0.60540 (9)	0.0334 (3)
N1	-0.0252 (2)	-0.2130 (2)	0.45011 (12)	0.0374 (4)
N2	0.0594 (3)	-0.2336 (2)	0.54541 (12)	0.0384 (4)

Table 2. Selected bond lengths (Å) and angles (°)

C101	1.236 (2)	C304	1.413 (2)
C102	1.275 (2)	C3C4	1.530 (2)
C1-C2	1.537 (2)	C406	1.220 (2)
C203	1.416 (2)	C405	1.293 (2)
C2—C3	1.524 (2)	N1—N2	1.422 (2)
01—C1—O2	125.4 (1)	O4—C3—C2	111.4 (1)
01-C1-C2	119.7 (2)	O4—C3—C4	111.4 (1)
02-C1-C2	114.9 (1)	C2—C3—C4	110.4 (1)
O3C2C3	111.3 (1)	06—C4—O5	125.0 (1)
O3-C2-C1	111.4 (1)	O6-C4-C3	121.5 (2)
C3-C2-C1	110.8 (1)	O5-C4-C3	113.5 (1)

Table 3. Hydrogen-bonding geometry (Å, °)

D — $H \cdot \cdot \cdot A$	<i>D</i> —Н	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O5—H5O· · ·O2 ⁱ	1.15 (2)	1.33 (2)	2.471 (2)	175 (2)
O3—H3O· · ·O6 ⁱⁱ	0.86 (2)	1.99 (2)	2.787 (2)	155 (2)
04—H40· · · 01 [™]	0.82 (2)	2.08 (2)	2.835 (2)	154 (2)
N1—H1N1···O4	0.92 (3)	2.02 (2)	2.828 (2)	146 (3)
$N1 - H2N1 \cdot \cdot \cdot O2^{iv}$	0.92 (3)	2.39 (3)	2.857 (2)	112 (2)
N1—H2N1···O1	0.92 (3)	2.11 (3)	2.867 (2)	138 (2)
$N1 - H3N1 \cdot \cdot \cdot N2^{v_1}$	1.05 (3)	1.91 (3)	2.952 (2)	171 (3)
N2H1N2···O3	0.85 (3)	2.29 (3)	2.997 (2)	141 (3)
$N2 - H2N2 \cdot \cdot \cdot O6^{vu}$	0.85 (3)	2.24 (4)	2.930 (2)	140 (3)
Symmetry codes:	(i) $1 + x$,	y, z; (ii)	$x - \frac{1}{2}, \frac{1}{2}$	-y, 1 - z;
(iii) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - y$	$z; (iv) - \frac{1}{2} - \frac{1}{2}$	x, -y, z - z	$\frac{1}{5}$; (v) $\frac{1}{5}$ + x , -	$-\frac{1}{2}-y, 1-z;$
(vi) $\bar{x} - \frac{1}{2}, -\frac{1}{2} - y$,	1 – z; (vii̇́) x	y - 1, z.		-

Data collection: XSCANS (Siemens, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93. Geometric calculations: PARST (Nardelli, 1983).

The authors would like to thank the Malaysian Government and the Universiti Sains Malaysia for research grant R&D No. 123-3417-2201. One of the authors (KS) thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship.

References

- Aakeroy, C. B. & Hitchcock, P. B. (1994). Acta Cryst. C50, 759-761.
- Aakeroy, C. B., Hitchcock, P. B. & Seddon, K. R. (1992). J. Chem. Soc. Chem. Commun. pp. 553-555.
- Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
- Garcia-Jaca, J., Insausti, M., Cortes, R., Rojo, T., Pizarro, J. L. & Arriortua, M. I. (1994). Polyhedron, 13, 357-364.
- Marshall, J. A. & Luke, G. P. (1992). Synlett. 12, 1007-1008.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Siemens (1991). XSCANS. X-ray Single Crystal Analysis System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Taylor, R., Kennard, O. & Versichel, W. (1984). J. Am. Chem. Soc. 106, 244-248.
- Watanabe, O., Noritake, T., Hirose, Y., Okada, A. & Kurauchi, T. (1994). J. Mater. Chem. 4, 993.
- Zyss, J., Pecaut, J., Levy, J. P. & Masse, R. (1993). Acta Cryst. B49, 334-342.

Acta Cryst. (1995). C51, 2087-2089

Coumarin 311

BOON-CHUAN YIP, OI-LING YAW, LIN-HUAT ONG, HOONG-KUN FUN* AND KANDASAMY SIVAKUMAR[†]

X-ray Crystallography Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

(Received 15 December 1994; accepted 21 April 1995)

Abstract

Coumarin 311, 7-(dimethylamino)-4-methyl-2H-1-benzopyran-2-one, C₁₂H₁₃NO₂, crystallizes in a triclinic crystal system with two molecules in the asymmetric unit. The molecules are planar and make an angle of 10.41 (2)° between each other. The molecules are stacked in layers parallel to (103).

[†] On leave from: Department of Physics, Anna University, Madras 600 025, India.

Comment

The title compound, (I), is a 7-aminocoumarin derivative and is used as laser dye. It gives laser emission around 453 nm in ethanol (Maeda, 1984). The crystal structure was determined as part of our structural studies on laser dyes.

The two molecules, A and B, in the asymmetric unit are shown in Fig. 1. The molecules are planar with a maximum deviation of 0.082 (2) Å for O11 in molecule A and 0.078 (1) Å for the same atom in B. The angle between the planes of the two molecules is 10.41 (2)°. The dihedral angle between the pyrone ring and the benzene ring is 1.23 (4) for A and 2.01 (4)° for B. The dihedral angles between the benzene ring and the amino group are 1.3 (1) and 4.2 (1)° for A and B, respectively.

Bond lengths and angles in the coumarin ring system in both molecules are normal and are in good agreement with those observed in coumarin 485 [7-(dimethylamino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one (Chinnakali, Sivakumar & Natarajan, 1990b)] and coumarin 480 [2,3,6,7-tetrahydro-9-methyl-1H,5H,11H-[1]benzopyrano[6,7,8-ij]quinolizin-11-one (Chinnakali, Sivakumar & Natarajan, 1990a)].

Fig. 1. Structure of coumarin 311 showing 50% probability displacement ellipsoids and the atom-numbering scheme.

The packing of the molecules viewed down the b axis (Fig. 2) shows that the molecules are stacked in layers parallel to (103), with an interlayer spacing of 3.428 Å. This distance is shorter than that observed in the packing of the rigidized aminocoumarins, which are normally stacked with an interlayer distance of ca 3.6 Å (Yip *et al.*, 1994).

Fig. 2. Packing of the molecules viewed down the b axis.

Experimental

Crystal data

The compound was purchased from Sigma Chemical Co., USA, and recrystallized from a mixture of methanol and dichloromethane by slow evaporation.

C₁₂H₁₃NO₂ $M_r = 203.23$ Triclinic $P\overline{1}$ a = 9.082 (2) Å b = 10.778 (2) Å c = 11.088 (3) Å $\alpha = 76.93$ (1)° $\beta = 83.41$ (1)° $\gamma = 80.78$ (1)° V = 1040.1 (4) Å³ Z = 4 $D_x = 1.298$ Mg m⁻³

```
Mo K\alpha radiation

\lambda = 0.71073 Å

Cell parameters from 35

reflections

\theta = 5-12.5^{\circ}

\mu = 0.089 \text{ mm}^{-1}

T = 293 (2) K

Needle

0.50 \times 0.42 \times 0.22 \text{ mm}

Yellow
```

Data collection

Siemens P4 four-circle	$R_{\rm int} = 0.0135$
diffractometer	$\theta_{\rm max} = 27.50^{\circ}$
θ -2 θ scans	$h = -10 \rightarrow 10$
Absorption correction:	$k = -13 \rightarrow 13$
none	$l = 0 \rightarrow 14$
5556 measured reflections	3 standard reflections
4659 independent reflections	monitored every 97
3397 observed reflections	reflections
$[I > 2\sigma(I)]$	intensity decay: none

Refinement

Refinement on F^2 $(\Delta/\sigma)_{max} < 0.001$ $R[F^2 > 2\sigma(F^2)] = 0.0523$ $\Delta\rho_{max} = 0.192$ e Å⁻³ $wR(F^2) = 0.1688$ $\Delta\rho_{min} = -0.269$ e Å⁻³

S = 1.116	Extinction correction: none
4659 reflections	Atomic scattering factors
352 parameters	from International Tables
All H-atom parameters	for Crystallography (1992,
refined	Vol. C, Tables 4.2.6.8 and
$w = 1/[\sigma^2(F_o^2) + (0.1107P)^2]$	6.1.1.4)
+ 0.0148 <i>P</i>]	
where $P = (F_o^2 + 2F_c^2)/3$	

Table	1. Fractional	atomic c	oordinates	and	equival	ent
	isotropic di	splacemen	t paramete	ers (Å	²)	

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	x	у	Z	U_{eq}
Molecule	Α	•		•
01 <i>A</i>	0.16905 (11)	-0.01742 (10)	-0.22478 (10)	0.0585 (3)
C2A	0.2450 (2)	0.0880 (2)	-0.2487 (2)	0.0630 (4)
C3A	0.1622 (2)	0.20738 (15)	-0.22889 (15)	0.0596 (4)
C4A	0.0184 (2)	0.21790 (13)	-0.18247 (13)	0.0513 (3)
C5A	-0.2038 (2)	0.10152 (14)	-0.10307 (15)	0.0551 (4)
C6A	-0.2679 (2)	-0.00907 (15)	-0.0772 (2)	0.0573 (4)
C7A	-0.1874 (2)	-0.12559 (13)	-0.10129 (13)	0.0483 (3)
C8A	-0.0392 (2)	-0.12352 (13)	-0.15197 (12)	0.0471 (3)
C9A	0.02201 (15)	-0.01037 (13)	-0.17628 (12)	0.0453 (3)
C10A	-0.0568 (2)	0.10530 (12)	-0.15358 (12)	0.0466 (3)
011 <i>A</i>	0.37571 (15)	0.06928 (14)	-0.28473 (15)	0.0940 (5)
C12A	-0.0628 (2)	0.3431 (2)	-0.1585 (2)	0.0652 (4)
N13A	-0.25293 (15)	-0.23520 (12)	-0.07567 (13)	0.0607 (4)
C14A	-0.1737 (2)	-0.35507 (14)	-0.1011 (2)	0.0635 (4)
C15A	-0.4056 (2)	-0.2347 (2)	-0.0205 (2)	0.0724 (5)
Molecule	B			
O1B	0.40315 (11)	-0.53610 (9)	-0.26603 (10)	0.0563 (3)
C2B	0.3285 (2)	-0.42335 (15)	-0.23725 (15)	0.0587 (4)
C3B	0.4021 (2)	-0.31119 (15)	-0.27519 (15)	0.0569 (4)
C4B	0.5364 (2)	-0.31127 (13)	-0.34120 (13)	0.0502 (3)
C5B	0.7445 (2)	-0.44296 (14)	-0.44737 (14)	0.0531 (4)
C6B	0.8063 (2)	-0.55687 (14)	-0.47725 (14)	0.0537 (4)
C7B	0.7357 (2)	-0.66893 (13)	-0.43499 (13)	0.0472 (3)
C8B	0.5989 (2)	-0.65671 (13)	-0.36280 (13)	0.0474 (3)
C9B	0.53933 (14)	-0.53976 (13)	-0.33533 (12)	0.0456 (3)
C10B	0.6087 (2)	-0.42904 (13)	-0.37473 (12)	0.0461 (3)
O11B	0.20594 (14)	-0.42934 (12)	-0.18230 (13)	0.0851 (4)
C12B	0.6089 (2)	-0.1915 (2)	-0.3812 (2)	0.0651 (4)
N13B	0.79847 (13)	-0.78265 (12)	-0.46583 (13)	0.0584 (3)
C14B	0.7273 (2)	-0.89738 (14)	-0.4276 (2)	0.0618 (4)
C15B	0.9438 (2)	-0.7958 (2)	-0.5319 (2)	0.0730 (5)

Table 2. Selected bond lengths (Å) and angles (°)

Molecule A	Molecule B
1.378 (2)	1.379 (2)
1.382 (2)	1.378 (2)
1.208 (2)	1.210 (2)
1.432 (2)	1.432 (2)
1.344 (2)	1.348 (2)
1.443 (2)	1.439 (2)
1.495 (2)	1.498 (2)
1.367 (2)	1.361 (2)
1.391 (2)	1.400 (2)
1.412 (2)	1.419 (2)
1.365 (2)	1.366 (2)
1.400 (2)	1.403 (2)
1.379 (2)	1.375 (2)
1.394 (2)	1.398 (2)
1.445 (2)	1.443 (2)
1.449 (2)	1.437 (2)
121.51 (11)	121.59 (10)
115.96 (14)	116.18 (13)
126.7 (2)	126.39 (14)
117.36 (13)	117.43 (12)
122.59 (13)	122.71 (13)
	Molecule A 1.378 (2) 1.382 (2) 1.208 (2) 1.432 (2) 1.344 (2) 1.443 (2) 1.443 (2) 1.495 (2) 1.367 (2) 1.367 (2) 1.365 (2) 1.412 (2) 1.365 (2) 1.400 (2) 1.379 (2) 1.379 (2) 1.394 (2) 1.445 (2)

C3-C4-C10	118.97 (13)	118.60 (12)
C3-C4-C12	121.11 (14)	121.24 (13)
C10-C4-C12	119.91 (14)	120.15 (13)
C6-C5-C10	122.06 (13)	122.46 (12)
C5-C6-C7	121.37 (13)	121.20 (13)
N13-C7-C8	121.90 (12)	122.10 (12)
N13-C7-C6	120.80 (13)	120.70 (12)
C8—C7—C6	117.30 (12)	117.18 (12)
C9—C8—C7	119.74 (12)	119.95 (11)
01	115.86 (11)	115.96 (11)
O1-C9-C10	120.79 (12)	120.52 (12)
C8-C9-C10	123.36 (12)	123.52 (12)
C5-C10-C9	116.16 (12)	115.67 (12)
C5-C10-C4	125.17 (13)	125.27 (12)
C9-C10-C4	118.67 (13)	119.04 (12)
C7-N13-C14	121.82 (12)	122.10 (12)
C7-N13-C15	120.49 (13)	121.29 (13)
C14-N13-C15	117.69 (13)	116.50 (13)

The structure was solved in the space group P1 and refined in $P\overline{1}$. All the H atoms were located from difference Fourier maps. The methyl H atoms of C14 were found to be disordered with two possible sites rotated by 60° from each other. While the remaining H atoms were refined isotropically, the two sets of the C14 H atoms were refined with 0.5 site occupancy and allowed to ride on C14 with a common isotropic temperature factor.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93. Geometric calculations: PARST (Nardelli, 1983).

The authors thank the Malaysian Government and the Universiti Sains Malaysia for research grant R&D No. 123-3417-2201. One of the authors (KS) thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1033). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chinnakali, K., Sivakumar, K. & Natarajan, S. (1990a). Acta Cryst. C46, 669-671.
- Chinnakali, K., Sivakumar, K. & Natarajan, S. (1990b). Acta Cryst. C46, 833-835.
- Maeda, M. (1984). Laser Dyes: Properties of Organic Compounds for Dye Lasers, p. 210. New York: Academic Press.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures, Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yip, B.-C., Fun, H.-K., Sivakumar, K., Zhou, Z.-Y., Shawkataly, O. B. & Teoh, S.-G. (1994). Acta Cryst. C51, 956–958.